Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychiatry ; 14: 1178633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37599888

RESUMO

Introduction: Despite a recent global decrease in suicide rates, death by suicide has increased in the United States. It is therefore imperative to identify the risk factors associated with suicide attempts to combat this growing epidemic. In this study, we aim to identify potential risk factors of suicide attempt using geospatial features in an Artificial intelligence framework. Methods: We use iterative Random Forest, an explainable artificial intelligence method, to predict suicide attempts using data from the Million Veteran Program. This cohort incorporated 405,540 patients with 391,409 controls and 14,131 attempts. Our predictive model incorporates multiple climatic features at ZIP-code-level geospatial resolution. We additionally consider demographic features from the American Community Survey as well as the number of firearms and alcohol vendors per 10,000 people to assess the contributions of proximal environment, access to means, and restraint decrease to suicide attempts. In total 1,784 features were included in the predictive model. Results: Our results show that geographic areas with higher concentrations of married males living with spouses are predictive of lower rates of suicide attempts, whereas geographic areas where males are more likely to live alone and to rent housing are predictive of higher rates of suicide attempts. We also identified climatic features that were associated with suicide attempt risk by age group. Additionally, we observed that firearms and alcohol vendors were associated with increased risk for suicide attempts irrespective of the age group examined, but that their effects were small in comparison to the top features. Discussion: Taken together, our findings highlight the importance of social determinants and environmental factors in understanding suicide risk among veterans.

2.
Plant Phenomics ; 5: 0072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519935

RESUMO

Plant phenotyping is typically a time-consuming and expensive endeavor, requiring large groups of researchers to meticulously measure biologically relevant plant traits, and is the main bottleneck in understanding plant adaptation and the genetic architecture underlying complex traits at population scale. In this work, we address these challenges by leveraging few-shot learning with convolutional neural networks to segment the leaf body and visible venation of 2,906 Populus trichocarpa leaf images obtained in the field. In contrast to previous methods, our approach (a) does not require experimental or image preprocessing, (b) uses the raw RGB images at full resolution, and (c) requires very few samples for training (e.g., just 8 images for vein segmentation). Traits relating to leaf morphology and vein topology are extracted from the resulting segmentations using traditional open-source image-processing tools, validated using real-world physical measurements, and used to conduct a genome-wide association study to identify genes controlling the traits. In this way, the current work is designed to provide the plant phenotyping community with (a) methods for fast and accurate image-based feature extraction that require minimal training data and (b) a new population-scale dataset, including 68 different leaf phenotypes, for domain scientists and machine learning researchers. All of the few-shot learning code, data, and results are made publicly available.

3.
Nucleic Acids Res ; 50(11): 6211-6223, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35061904

RESUMO

In eukaryotes, fine-scale maps of meiotic recombination events have greatly advanced our understanding of the factors that affect genomic variation patterns and evolution of traits. However, in bacteria that lack natural systems for sexual reproduction, unbiased characterization of recombination landscapes has remained challenging due to variable rates of genetic exchange and influence of natural selection. Here, to overcome these limitations and to gain a genome-wide view on recombination, we crossed Bacillus strains with different genetic distances using protoplast fusion. The offspring displayed complex inheritance patterns with one of the parents consistently contributing the major part of the chromosome backbone and multiple unselected fragments originating from the second parent. Our results demonstrate that this bias was in part due to the action of restriction-modification systems, whereas genome features like GC content and local nucleotide identity did not affect distribution of recombination events around the chromosome. Furthermore, we found that recombination occurred uniformly across the genome without concentration into hotspots. Notably, our results show that species-level genetic distance did not affect genome-wide recombination. This study provides a new insight into the dynamics of recombination in bacteria and a platform for studying recombination patterns in diverse bacterial species.


Assuntos
Bacillus , Bacillus/classificação , Bacillus/genética , Mapeamento Cromossômico , Evolução Molecular , Técnicas Genéticas , Recombinação Homóloga , Técnicas Microbiológicas , Protoplastos
4.
Plants (Basel) ; 10(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34579292

RESUMO

Quinoa is a crop originating in the Andes but grown more widely and with the genetic potential for significant further expansion. Due to the phenotypic plasticity of quinoa, varieties need to be assessed across years and multiple locations. To improve comparability among field trials across the globe and to facilitate collaborations, components of the trials need to be kept consistent, including the type and methods of data collected. Here, an internationally open-access framework for phenotyping a wide range of quinoa features is proposed to facilitate the systematic agronomic, physiological and genetic characterization of quinoa for crop adaptation and improvement. Mature plant phenotyping is a central aspect of this paper, including detailed descriptions and the provision of phenotyping cards to facilitate consistency in data collection. High-throughput methods for multi-temporal phenotyping based on remote sensing technologies are described. Tools for higher-throughput post-harvest phenotyping of seeds are presented. A guideline for approaching quinoa field trials including the collection of environmental data and designing layouts with statistical robustness is suggested. To move towards developing resources for quinoa in line with major cereal crops, a database was created. The Quinoa Germinate Platform will serve as a central repository of data for quinoa researchers globally.

5.
Genome Biol ; 21(1): 304, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33357233

RESUMO

BACKGROUND: A mechanistic understanding of the spread of SARS-CoV-2 and diligent tracking of ongoing mutagenesis are of key importance to plan robust strategies for confining its transmission. Large numbers of available sequences and their dates of transmission provide an unprecedented opportunity to analyze evolutionary adaptation in novel ways. Addition of high-resolution structural information can reveal the functional basis of these processes at the molecular level. Integrated systems biology-directed analyses of these data layers afford valuable insights to build a global understanding of the COVID-19 pandemic. RESULTS: Here we identify globally distributed haplotypes from 15,789 SARS-CoV-2 genomes and model their success based on their duration, dispersal, and frequency in the host population. Our models identify mutations that are likely compensatory adaptive changes that allowed for rapid expansion of the virus. Functional predictions from structural analyses indicate that, contrary to previous reports, the Asp614Gly mutation in the spike glycoprotein (S) likely reduced transmission and the subsequent Pro323Leu mutation in the RNA-dependent RNA polymerase led to the precipitous spread of the virus. Our model also suggests that two mutations in the nsp13 helicase allowed for the adaptation of the virus to the Pacific Northwest of the USA. Finally, our explainable artificial intelligence algorithm identified a mutational hotspot in the sequence of S that also displays a signature of positive selection and may have implications for tissue or cell-specific expression of the virus. CONCLUSIONS: These results provide valuable insights for the development of drugs and surveillance strategies to combat the current and future pandemics.


Assuntos
Adaptação Biológica , Evolução Molecular , Modelos Genéticos , SARS-CoV-2/genética , Proteínas Virais/genética , Inteligência Artificial , Genoma Viral , Haplótipos , Mutação , Seleção Genética
6.
G3 (Bethesda) ; 10(5): 1629-1637, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132166

RESUMO

Epigenomic changes have been considered a potential missing link underlying phenotypic variation in quantitative traits but is potentially confounded with the underlying DNA sequence variation. Although the concept of epigenetic inheritance has been discussed in depth, there have been few studies attempting to directly dissect the amount of epigenomic variation within inbred natural populations while also accounting for genetic diversity. By using known genetic relationships between Brachypodium lines, multiple sets of nearly identical accession families were selected for phenotypic studies and DNA methylome profiling to investigate the dual role of (epi)genetics under simulated natural seasonal climate conditions. Despite reduced genetic diversity, appreciable phenotypic variation was still observable in the measured traits (height, leaf width and length, tiller count, flowering time, ear count) between as well as within the inbred accessions. However, with reduced genetic diversity there was diminished variation in DNA methylation within families. Mixed-effects linear modeling revealed large genetic differences between families and a minor contribution of DNA methylation variation on phenotypic variation in select traits. Taken together, this analysis suggests a limited but significant contribution of DNA methylation toward heritable phenotypic variation relative to genetic differences.


Assuntos
Brachypodium , Brachypodium/genética , Metilação de DNA , Epigênese Genética , Epigenômica , Variação Genética , Genótipo , Humanos , Fenótipo
7.
Curr Opin Biotechnol ; 61: 217-225, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32086132

RESUMO

Human population growth and accelerated climate change necessitate agricultural improvements using designer crop ideotypes (idealized plants that can grow in niche environments). Diverse and highly skilled research groups must integrate efforts to bridge the gaps needed to achieve international goals toward sustainable agriculture. Given the scale of global agricultural needs and the breadth of multiple types of omics data needed to optimize these efforts, explainable artificial intelligence (AI with a decipherable decision making process that provides a meaningful explanation to humans) and exascale computing (computers that can perform 1018 floating-point operations per second, or exaflops) are crucial. Accurate phenotyping and daily-resolution climatype associations are equally important for refining ideotype production to specific environments at various levels of granularity. We review advances toward tackling technological hurdles to solve multiple United Nations Sustainable Development Goals and discuss a vision to overcome gaps between research and policy.


Assuntos
Inteligência Artificial , Desenvolvimento Sustentável , Agricultura , Objetivos , Humanos , Nações Unidas
8.
Front Plant Sci ; 10: 1249, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649710

RESUMO

Understanding the regulatory network controlling cell wall biosynthesis is of great interest in Populus trichocarpa, both because of its status as a model woody perennial and its importance for lignocellulosic products. We searched for genes with putatively unknown roles in regulating cell wall biosynthesis using an extended network-based Lines of Evidence (LOE) pipeline to combine multiple omics data sets in P. trichocarpa, including gene coexpression, gene comethylation, population level pairwise SNP correlations, and two distinct SNP-metabolite Genome Wide Association Study (GWAS) layers. By incorporating validation, ranking, and filtering approaches we produced a list of nine high priority gene candidates for involvement in the regulation of cell wall biosynthesis. We subsequently performed a detailed investigation of candidate gene GROWTH-REGULATING FACTOR 9 (PtGRF9). To investigate the role of PtGRF9 in regulating cell wall biosynthesis, we assessed the genome-wide connections of PtGRF9 and a paralog across data layers with functional enrichment analyses, predictive transcription factor binding site analysis, and an independent comparison to eQTN data. Our findings indicate that PtGRF9 likely affects the cell wall by directly repressing genes involved in cell wall biosynthesis, such as PtCCoAOMT and PtMYB.41, and indirectly by regulating homeobox genes. Furthermore, evidence suggests that PtGRF9 paralogs may act as transcriptional co-regulators that direct the global energy usage of the plant. Using our extended pipeline, we show multiple lines of evidence implicating the involvement of these genes in cell wall regulatory functions and demonstrate the value of this method for prioritizing candidate genes for experimental validation.

9.
Genetics ; 211(1): 317-331, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446522

RESUMO

The development of model systems requires a detailed assessment of standing genetic variation across natural populations. The Brachypodium species complex has been promoted as a plant model for grass genomics with translation to small grain and biomass crops. To capture the genetic diversity within this species complex, thousands of Brachypodium accessions from around the globe were collected and genotyped by sequencing. Overall, 1897 samples were classified into two diploid or allopolyploid species, and then further grouped into distinct inbred genotypes. A core set of diverse B. distachyon diploid lines was selected for whole genome sequencing and high resolution phenotyping. Genome-wide association studies across simulated seasonal environments was used to identify candidate genes and pathways tied to key life history and agronomic traits under current and future climatic conditions. A total of 8, 22, and 47 QTL were identified for flowering time, early vigor, and energy traits, respectively. The results highlight the genomic structure of the Brachypodium species complex, and the diploid lines provided a resource that allows complex trait dissection within this grass model species.


Assuntos
Aclimatação , Brachypodium/genética , Estudo de Associação Genômica Ampla/métodos , Características de História de Vida , Melhoramento Vegetal/métodos , Polimorfismo Genético , Genoma de Planta , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...